Yamaguchi, A. et al. Real-space observation of current-induced domain wall motion in submicron magnetic wires. Phys. Rev. Lett. 92077205 (2004).
Allwood, DA et al. Magnetic domain wall logic. Science 3091688 (2005).
Kläui, M., Ehrke, H. & Rüdiger, U. Direct observation of domain wall pinning at nanoscale constrictions. Appl. Phys. Lett. 87102509 (2005).
Beach, GSD, Nistor, C., Knutson, C., Tsoi, M. & Erskine, JL Dynamics of field-driven domain wall propagation in ferromagnetic nanowires. Nature Mater. 4741 (2005).
Parkin, SSP, Hayashi, M. & Thomas, L. Magnetic domain-walled running track memory. Science 320190 (2008).
O’Brien, L. et al. Bidirectional magnetic nanowire shift register. Appl. Phys. Lett. 95232502 (2009).
Lahtinen, THE, Franke, KJA & van Dijken, S. Electric field control of magnetic domain wall motion and local magnetization inversion. Science. representing 2258 (2012).
Tanigawa, H. et al. Thickness dependence of current-induced domain wall motion in a Co/Ni multilayer with out-of-plane anisotropy. Appl. Phys. Lett. 102152410 (2013).
Sbiaa, R. & Piramanayagam, SN Multilevel domain wall memory in tight magnetic nanowires. Appl. Phys. A 1141347 (2014).
Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnology. 11231-241 (2016).
Kim, K.-J. et al. Fast domain wall motion near the angular momentum compensation temperature of ferrimagnetics. Nat. Mater. 161187 (2017).
Al Bahri, M. et al. Staggered magnetic nanowire devices for efficient domain wall pinning in racetrack memory. Phys. Rev. Appl. 11024023 (2019).
Kim, YU, Kwon, J., Hwang, HK, Purnama, I. & You, CY Abnormal multi-level Hall resistance in a single Hall cross for neuromorphic device applications. Science. representing ten1285 (2020).
Muhlbauer, S. et al. Skyrmion Lattice in a chiral magnet. Science 323915 (2009).
Rößler, UK, Bogdanov, AN & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442797 (2006).
Jonietz, F. et al. Spin transfer couples in MnSi at ultra-low current densities. Science 3301648–1651 (2010).
Romming, N. et al. Writing and deleting unique magnetic skyrmions. Science 341636–639 (2013).
Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability, and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnology. 8839 (2013).
Wooo, S. et al. Observation of magnetic skyrmions at room temperature and their current-induced dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15501-506 (2016).
Ding, J., Yang, X. & Zhu, T. Manipulation of the current-induced motion of magnetic skyrmions in the magnetic nanotrack. J.Phys. D 48115004 (2015).
Fert, A., Reyren, N. & Cros, V. Magnetic Skyrmions: Advances in Physics and Potential Applications. Nat. Rev. Mater. 217031 (2017).
Prychinenko, D. et al. Magnetic skyrmion as a nonlinear resistive element: a potential building block for reservoir computing. Phys. Rev. Appl. 9014034 (2018).
Zazvorka, J. et al. Skyrmion thermal diffusion used in a redistribution device. Nat. Nanotechnology. 14658 (2019).
Casiragui, A. et al. Individual manipulation of skyrmions by local magnetic field gradients. Common. Phys. 2145 (2019).
Yokouchi, T. et al. Creation of magnetic skyrmions by surface acoustic waves. Nat. Nanotechnology. 15361 (2020).
Sbiaa, R. Multi-state magnetic domain wall devices for neuromorphic computing. Phys. Solidi-RRL statistics 152100125 (2021).
Wang, X. et al. Manipulation of the density of magnetic skyrmions by multilayer repetition and thermal annealing. Phys. Rev. B 104064421 (2021).
Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Round. 12091–98 (1960).
Dzyaloshinskii, IE Theory of helical structures in antiferromagnets. Sov. Phys. JETP 19960–971 (1964).
Google Scholar
Sues, D. et al. Spinning torque efficiency and analytical error rate estimates from skyrmion’s racing memory. Science. representing 94827 (2019).
Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4107133 (2014).
Chui, CP, Ma, F. & Zhou, Y. Geometric and physical conditions for skyrmion stability in a nanowire. AIP Adv. 5047141 (2015).
Deger, C., Yavuz, I. & Yildiz, F. Coherent current-driven skyrmion generation. Science. representing 93513 (2019).
Chen, R., Li, Y., Pavlidis, VF & Moutafis, C. Skyrmionic Interconnect Device. Phys. Rev. Res. 2043312 (2020).
Sbia, R. et al. Ferromagnetic resonance measurements of multilayers (Co/Ni/Co/Pt) with perpendicular magnetic anisotropy. J.Phys. D 49425002 (2016).
Thiaville, A., Nakatani, Y., Miltat, J., and Suzuki, Y. Micromagnetic understanding of current-induced domain wall motion in patterned nanowires. Europhys. Lett. 69990 (2005).
Kandukuri, S., Murthy, VSN, and Thiruvikraman, PK Creation of isolated skyrmion lattices, skyrmion lattices and antiskyrmions by magnetization inversion in the Co/Pd nanostructure. Science. representing 1118945 (2021).
Masell, J. & Karin, Everschor-Sitte K. Current-induced dynamics of chiral magnetic structures: creation, movement and applications. In Chirality, Magnetism and Magnetoelectricity. Topics in Applied Physics Flight. 138 (ed. Kamenetskii, E.) (Springer, 2021).
Google Scholar
Zhang, X., Xia, J., Zhao, GP, Liu, X. & Zhou, Y. Magnetic skyrmion transport in a nanotrack with spatially variable damping and non-adiabatic torque. IEEE Trans. Mag. 531–6 (2016).
Morshed, MG, Vakili, H. & Ghosh, AW Positional stability of Skyrmions in racetrack memory with notched geometry. preprint arXiv arXiv:2110.13445.
Wang, Z. et al. Generation and Hall effect of activated skyrmions using non-magnetic point contacts. Phys. Rev. B 100184426 (2019).
Sbiaa, R. & Al Bahri, M. Tight nanowire with stabilized magnetic domain wall. J. Magn. Mag. Carpet. 411113 (2016).
Rohart, S. & Thiaville, A. Confinement of Skyrmion in ultra-thin film nanostructures in the presence of the Dzyaloshinskii-Moriya interaction. Phys. Rev. B 88184422 (2013).
Wang, XS, Yuan, HY & Wang, XR A theory on the size of skyrmions. Common. Phys. 131 (2018).
Zhang, X. et al. Fully magnetic control of skyrmions in nanowires by a spin wave. Nanotechnology 26225701 (2015).